The strong rigidity theorem for non-Archimedean uniformization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ahlfors Islands Theorem for Non-archimedean Meromorphic Functions

We present a p-adic and non-archimedean version of Ahlfors’ Five Islands Theorem for meromorphic functions, extending an earlier theorem of the author for holomorphic functions. In the non-archimedean setting, the theorem requires only four islands, with explicit constants. We present examples to show that the constants are sharp and that other hypotheses of the theorem cannot be removed.

متن کامل

The Uniformization Theorem and Universal Covers

This paper will deal with the consequences of the Uniformization Theorem, which is a major result in complex analysis and differential geometry. We will proceed by stating the theorem, which is that for any simply connected Riemann surface, there exists a biholomorphic map to one (and only one) of the following three: the Riemann sphere, the open unit disk, and the complex plane. After the theo...

متن کامل

CONFORMAL GEOMETRY SEMINAR The Poincaré Uniformization Theorem

1.1. Geometry. A covariant derivative on a manifold M is an operator ∇XY on vector fields X and Y satisfying for any smooth function f : (i) ∇fXY = f∇XY ; and (ii) ∇X(fY ) = f∇XY + (∇Xf)Y . If g is a Riemannian metric on M , then there is associated with g a unique covariant derivative ∇ characterized by: (iii) ∇XY −∇YX = [X,Y ]; and (iv) ∇X ( g(Y,Z) ) = g(∇XY, Z) + g(Y,∇XZ). We define the Chri...

متن کامل

A Bowen type rigidity theorem for non-cocompact hyperbolic groups

We establish a Bowen type rigidity theorem for geometrically finite actions of the fundamental group of finite volume noncompact hyperbolic manifolds (with dimension at least 3). Mathematics Subject Classification (2000). 53C24, 30F40, 37F30.

متن کامل

Measuring Geodesic Distances via the Uniformization Theorem

According to the Uniformization Theorem any surface can be conformally mapped into a flat domain, that is, a domain with zero Gaussian curvature. The conformal factor indicates the local scaling introduced by such a mapping. This process could be used to compute geometric quantities in a simplified flat domain. For example, the computation of geodesic distances on a curved surface can be mapped...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1998

ISSN: 0040-8735

DOI: 10.2748/tmj/1178224897